Модели каналов передачи информации

Содержание
Каналы Радиосистем
1. Классификация радиоканалов. Диапазоны частот
2. Помехи в радиоканалах
3. Дальность действия радиосистем в идеальных каналах
4. Статистические методы анализа радиоканалов. Оптимизация линейных блоков канала
5. Модели каналов передачи информации

В общем случае каналы классифицируются по характеру входного и выходного сигналов. Канал называют непрерывным (по уровням сигналов), если множество сигналов на входе и выходе является несчетным. Если множество сигналов с дискретным временем на входе и выходе является конечным (по уровням), канал называется дискретным. Канал называют полунепрепрывным, если он является дискретным по входу и непрерывным по выходу.

Радиоканалы, содержащие в своем составе радиолинию — открытое пространство, в принципе являются непрерывными каналами. Реальные радиоканалы отличаются большим разнообразием с точки зрения их свойств и характеристик. В целях упрощения задачи определения статистических характеристик сигналов, наблюдаемых на выходах каналов, во многих случаях целесообразно использовать типичные модели реальных каналов, отображающих их наиболее существенные свойства. Для задания математической модели достаточно указать ограничения, накладываемые на множество возможных входных сигналов и, что особенно существенно, вероятностные характеристики выходных колебаний.

Модели непрерывного канала

Рассмотрим вначале наиболее типичные и широко используемые модели непрерывных каналов. Эти модели представляют интерес при передаче сигналов, как от непрерывных, так и дискретных источников. Далее будем полагать, что все модели представляют каналы с аддитивным гауссовским шумом n(t), имеющим нулевое математическое ожидание и заданную корреляционную функцию. Наиболее типичной является модель с белым шумом, аппроксимирующим тепловой флуктуационный шум, неизбежно присутствующий во всех реальных каналах.

Канал с точно известным сигналом. Сигнал на выходе канала представляет собой

x(t)=As(t-\tau )+n(t) ,

 

Предполагается, что форма сигнала s(t), множитель интенсивности А и задержка \tau известны (в частности \tau =0 , что соответствует изменению начала отсчета времени на выходе канала). Здесь распределение сигнала х является гауссовским. Эта модель применима для РЛС в идеализированных условиях, когда дальность, скорость и ЭПР объекта являются постоянными. Она также может быть использована для аппроксимации радиотелеграфных каналов спутниковой связи, а также для радиоканалов с медленно меняющимися параметрами, для которых значения А и \tau могут быть предсказаны с достаточной точностью.

Канал со случайной фазой сигнала. В отличие от предыдущего задержка является случайной величиной. Для узкополосных сигналов s(t) с центральной частотой спектра    {{\omega }_{0}} выражение для выходного сигнала представляется в виде

x(t)=A\left[ s(t)cos\varphi +\bar{s}(t)\sin \varphi \right]+n(t)

где s(t) и \bar{s}(t) — функции, сопряженные по Гильберту; \varphi ={{\omega }_{0}}\tau — случайная начальная фаза. Как правило, предполагается, что фаза является равномерно распределенной в интервале \left[ 0,2\pi \right] . Эта модель может быть использована для тех же каналов, что и предыдущая, если начальная фаза сигналов на выходе канала по тем или иным причинам флуктуирует (нестабильность частоты генераторов, флуктуации протяженности пути распространения сигналов).

В каналах радиосвязи со случайной фазой нередко случайной является также и амплитуда А. При рэлеевских  изменениях амплитуды и равновероятной фазе квадратурные компоненты A\cos \varphi и A\sin \varphi являются гауссовскими случайными величинами. При точно известном сигнале s(t) рассматриваемый канал может быть назван гауссовским каналом с квазидетерминированпным сигналом, т. е. сигналом известной формы, конечное число параметров которого являются случайными.

Радиотелеграфный канал с межсимвольной интерференцией. Межсимвольная интерференция радиотелеграфных сигналов является следствием рассеяния сигналов во времени. Она проявляется в том, что полезный сигнал на выходе канала, описываемый общим выражением вида

S(t)=A(t)\left[ s(t)cos\varphi (t)+\bar{s}(t)\sin \varphi (t) \right] ,

является результатом суперпозиции откликов канала на воздействие сигналов одной и той же формы, поступающих в канал с различной задержкой во времени. Межсимвольная интерференция прежде всего является следствием нелинейности фазочастотной характеристики канала передачи. В радиоканалах различных диапазонов волн причиной возникновения межсимвольной интерференции часто является многолучевое распространение радиоволн.

Канал с квазидетерминированным сигналом и посторонними мешающими воздействиями. В канале на фоне белого гауссовского шума присутствуют сигнал известной формы со случайными параметрами s(t,{{\lambda }_{1}},...,{{\lambda }_{k}}) и совокупность мешающих сигналов r(t,\mu _{1}^{(i)},...,\mu _{m}^{(i)}) ,так что выходной сигнал представляется в виде

x(t)=s(t,{{\lambda }_{1}},...,{{\lambda }_{k}})+\sum\limits_{i}{{{r}_{i}}(t,\mu _{1}^{(i)},...,\mu _{m}^{(i)})}+n(t)

Эта модель применима для радиоканалов передачи сигналов от источников дискретных сообщений в условиях сильной перегрузки канала посторонними сигналами с одинаковой структурой, а также в условиях создания активных преднамеренных помех.

Гауссовский канал со случайным сигналом. Сигнал на выходе канала представляется в виде

x(t)=S(t)+n(t)

где и шум и сигнал представляют собой случайные процессы. Нередко предполагается, что сигнал S и, следовательно, х распределены по гауссовскому закону. В некоторых случаях гауссовская модель удовлетворительно описывает каналы передачи сообщений от непрерывных источников с применением амплитудной модуляции.

Канал со структурно-детерминированным сигналом и посторонними мешающими воздействиями. Под структурно-детерминированным сигналом понимается радиосигнал s\left[ t,\lambda (t) \right] , характеристики переносчика и вид модуляции которого известны, в то время как модулирующий сигнал A(t) является непрерывным случайным процессом с известными статистическими характеристиками. В общем случае сигнал на выходе канала может быть представлен в виде

x(t)=s\left[ t,\lambda (t) \right]+\sum\limits_{i}{{{r}_{i}}(t,{{\mu }_{i}}(t))}+n(t)

Рассматриваемая модель отличается от модели канала с квазидетерминированными сигналами только характером множества случайных параметров, закодированных в радиосигналах известной структуры и формы.

Модели дискретного канала

Модели дискретного канала при теоретическом исследовании радиосистем представляют существенный интерес, поскольку помехоустойчивость систем в условиях воздействия интенсивных помех в значительной мере определяется способами кодирования и декодирования модулирующих и демодулированных сигналов. При решении указанных задач целесообразно использовать простые модели дискретного канала, при построении которых свойства непрерывного канала непосредственно не учитываются. В дискретном канале входными и выходными сигналами являются последовательности импульсов, представляющих поток кодовых символов. Поэтому в модели дискретного канала наряду с ограничениями на параметры множества возможных сигналов на входе достаточно указать распределение условных вероятностей выходного сигнала при заданном входном. Для определения множества входных сигналов достаточно указать число m различных символов, число n импульсов в последовательности и, если это необходимо, длительность Tin и Tout каждого импульса на входе и выходе канала. Как правило, эти длительности одинаковы, так что одинаковыми являются и длительности любых n-последовательностей на входе и выходе. Вследствие воздействия помех в канале последовательности импульсов на входе и выходе канала могут оказаться различными. В общем случае для любого n необходимо указать вероятность того, что при передаче некоторой последовательности В на выходе появится конкретная реализация случайной последовательности В.

Рассматриваемые здесь n-последовательности можно представлять векторами в mn-мерном эвклидовом пространстве, в котором операции «сложения» и «вычитания» понимаются как поразрядное суммирование по модулю m и аналогично определяется умножение на целое число. В этом пространстве целесообразно ввести в рассмотрение «вектор ошибки» Е, под которым следует понимать поразрядную разность между входным (переданным) и выходным (принятым) векторами, или иначе, представлять принятый вектор в виде суммы переданного и вектора ошибки: \hat{B}=B+E , где случайный вектор ошибки Е в определенном смысле играет роль помехи n(t) в модели непрерывного канала. Различные модели дискретного канала отличаются распределением вероятностей вектора ошибки. В общем случае распределение вероятностей Е может зависеть от реализации вектора \hat{B} . Вектор ошибки приобретает особенно наглядное толкование в случае двоичного канала, когда m = 2. Появление символа 1 в любом месте вектора ошибки свидетельствует о наличии ошибки в соответствующем разряде переданной n-последовательности. Число ненулевых символов в векторе ошибки называют весом вектора ошибки.

Наиболее простой моделью дискретного канала является симметричный канал без памяти. Таковым является канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью р и правильно с вероятностью q = 1 — р, причем в случае ошибки вместо переданного символа {{b}_{i}} может быть с равной вероятностью принят любой другой символ {{\hat{b}}_{j}} , т. е.

p({{\hat{b}}_{j}}|{{b}_{i}})=\left\{ \begin{matrix}</p>
<p>p/m-1,\,i\ne j \\</p>
<p>1-p,\,i=j \\</p>
<p>\end{matrix} \right.   (2.13)

Термин «без памяти» означает, что вероятность появления ошибки в любом разряде n-последовательности не зависит от того, какие символы передавались до этого разряда и как они были приняты.

Вероятность появления какого-либо n-мерного вектора ошибки веса l в этом канале равна

p(E)={{\left[ p/(m-1) \right]}^{l}}{{(1-p)}^{n-l}}

Вероятность того, что произошло l любых ошибок, расположенных произвольным образом на протяжении n-последовательности, определяется законом Бернулли

p(l)=C_{n}^{l}{{\left[ p/(m-1) \right]}^{l}}{{(1-p)}^{n-l}}      (2.14)

где C_{n}^{l}=n!/\left[ l!(n-l)! \right] — биноминальный коэффициент (число различных сочетаний l ошибок в n-последовательности).

Модель симметричного канала без памяти (биномиального канала) является хорошей аппроксимацией канала с аддитивным белым шумом при неизменном множителе интенсивности сигнала. Рис. 1,а демонстрирует граф, отображающий вероятности переходов в двоичном симметричном канале без памяти.

В несимметричном канале без памяти ошибки возникают также независимо друг от друга, однако вероятности перехода символов 1 в 0 и обратно при прохождении сигнала в канале являются различными. Соответствующий граф переходных вероятностей в этом канале представлен на рис. 1 ,б.

 

Рис. 1

Граф переходных вероятностей в дискретном канале